Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis

Plant Reprod. 2018 Mar;31(1):89-105. doi: 10.1007/s00497-017-0315-0. Epub 2017 Dec 7.

Abstract

Floral meristem size is redundantly controlled by CLAVATA3, AGAMOUS , and SUPERMAN in Arabidopsis. The proper regulation of floral meristem activity is key to the formation of optimally sized flowers with a fixed number of organs. In Arabidopsis thaliana, multiple regulators determine this activity. A small secreted peptide, CLAVATA3 (CLV3), functions as an important negative regulator of stem cell activity. Two transcription factors, AGAMOUS (AG) and SUPERMAN (SUP), act in different pathways to regulate the termination of floral meristem activity. Previous research has not addressed the genetic interactions among these three genes. Here, we quantified the floral developmental stage-specific phenotypic consequences of combining mutations of AG, SUP, and CLV3. Our detailed phenotypic and genetic analyses revealed that these three genes act in partially redundant pathways to coordinately modulate floral meristem sizes in a spatial and temporal manner. Analyses of the ag sup clv3 triple mutant, which developed a mass of undifferentiated cells in its flowers, allowed us to identify downstream targets of AG with roles in reproductive development and in the termination of floral meristem activity. Our study highlights the role of AG in repressing genes that are expressed in organ initial cells to control floral meristem activity.

Keywords: AGAMOUS; Arabidopsis thaliana; CLAVATA3; Floral meristem; Reproductive development; SUPERMAN.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AGAMOUS Protein, Arabidopsis / genetics
  • AGAMOUS Protein, Arabidopsis / physiology*
  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / physiology
  • Flowers / genetics
  • Flowers / growth & development
  • Flowers / physiology*
  • Gene Expression Regulation, Plant
  • Meristem / physiology*
  • Mutation
  • Plant Cells / physiology
  • Reproduction
  • Transcription Factors / genetics
  • Transcription Factors / physiology

Substances

  • AGAMOUS Protein, Arabidopsis
  • AT2G27250 protein, Arabidopsis
  • Arabidopsis Proteins
  • Transcription Factors
  • superman protein, Arabidopsis