Phonon Sidebands in Monolayer Transition Metal Dichalcogenides

Phys Rev Lett. 2017 Nov 3;119(18):187402. doi: 10.1103/PhysRevLett.119.187402. Epub 2017 Nov 1.

Abstract

Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient exciton-phonon scattering couples bright and dark states and gives rise to an asymmetric excitonic line shape. The observed asymmetry can be traced back to phonon-induced sidebands that are accompanied by a polaron redshift. We present a joint theory-experiment study investigating the microscopic origin of these sidebands in different TMD materials taking into account intra- and intervalley scattering channels opened by optical and acoustic phonons. The gained insights contribute to a better understanding of the optical fingerprint of these technologically promising nanomaterials.