Background: Genomic profiling of malignant tumours has assisted clinicians in providing targeted therapies for many serious cancer-related illnesses. Although the characterisation of somatic mutations is the primary aim of tumour profiling for treatment, germline mutations may also be detected given the heterogenous origin of mutations observed in tumours. Guidance documents address the return of germline findings that have health implications for patients and their genetic relations. However, the implications of discovering a potential but unconfirmed germline finding from tumour profiling are yet to be fully explored. Moreover, as tumour profiling is increasingly applied in oncology, robust ethical frameworks are required to encourage large-scale data sharing and data aggregation linking molecular data to clinical outcomes, to further understand the role of genetics in oncogenesis and to develop improved cancer therapies.
Results: This paper reports on the results of empirical research that is broadly aimed at developing an ethical framework for obtaining informed consent to return results from tumour profiling tests and to share the biomolecular data sourced from tumour tissues of cancer patients. Specifically, qualitative data were gathered from 36 semi-structured interviews with cancer patients and oncology clinicians at a cancer treatment centre in Singapore. The interview data indicated that patients had a limited comprehension of cancer genetics and implications of tumour testing. Furthermore, oncology clinicians stated that they lacked the time to provide in depth explanations of the tumour profile tests. However, it was accepted from both patients and oncologist that the return potential germline variants and the sharing of de-identified tumour profiling data nationally and internationally should be discussed and provided as an option during the consent process.
Conclusions: Findings provide support for the return of tumour profiling results provided that they are accompanied with an adequate explanation from qualified personnel. They also support the use of broad consent regiments within an ethical framework that promotes trust and benefit sharing with stakeholders and provides accountability and transparency in the storage and sharing of biomolecular data for research.
Keywords: Genomic data sharing; Germline mutations; Informed consent; Tumour profiling.