miRNAs play essential roles in the mechanics of gene regulation, however, on an organismal-scale, the processes in which they are deployed are not well understood. Here, we adopt an evolutionary developmental approach to study miRNA function by examining their expression throughout embryogenesis in both Caenorhabditis elegans and Drosophila melanogaster. We find that, in both species, miRNA transcriptomic shifts in a punctuated fashion during the mid-developmental transition, specifying two dominant modes of early and late expression profiles. Strikingly, late-expressed miRNAs are enriched for phylogenetic conservation and function by fine-tuning the expression of their targets, implicating a role in the canalization of cell types during differentiation. In contrast, early expressed miRNAs are inversely expressed with their targets suggesting strong target-inhibition. Taken together, our work exposes a bimodal role for miRNA function during animal development, involving late-expressed physiological roles and early expressed repressive roles.
Keywords: embryogenesis; evolutionary and developmental biology; gene regulation; miRNAs.
© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.All rights reserved. For Permissions, please e-mail: [email protected].