Stimulating neural plasticity with real-time fMRI neurofeedback in Huntington's disease: A proof of concept study

Hum Brain Mapp. 2018 Mar;39(3):1339-1353. doi: 10.1002/hbm.23921. Epub 2017 Dec 13.

Abstract

Novel methods that stimulate neuroplasticity are increasingly being studied to treat neurological and psychiatric conditions. We sought to determine whether real-time fMRI neurofeedback training is feasible in Huntington's disease (HD), and assess any factors that contribute to its effectiveness. In this proof-of-concept study, we used this technique to train 10 patients with HD to volitionally regulate the activity of their supplementary motor area (SMA). We collected detailed behavioral and neuroimaging data before and after training to examine changes of brain function and structure, and cognitive and motor performance. We found that patients overall learned to increase activity of the target region during training with variable effects on cognitive and motor behavior. Improved cognitive and motor performance after training predicted increases in pre-SMA grey matter volume, fMRI activity in the left putamen, and increased SMA-left putamen functional connectivity. Although we did not directly target the putamen and corticostriatal connectivity during neurofeedback training, our results suggest that training the SMA can lead to regulation of associated networks with beneficial effects in behavior. We conclude that neurofeedback training can induce plasticity in patients with Huntington's disease despite the presence of neurodegeneration, and the effects of training a single region may engage other regions and circuits implicated in disease pathology.

Keywords: Huntington's disease; brain training; neurodegenerative diseases; neurofeedback training; neuroplasticity; real-time fMRI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Brain Mapping
  • Cognition / physiology
  • Female
  • Gray Matter / diagnostic imaging
  • Gray Matter / pathology
  • Humans
  • Huntington Disease / diagnostic imaging
  • Huntington Disease / pathology
  • Huntington Disease / physiopathology*
  • Learning / physiology
  • Magnetic Resonance Imaging* / methods
  • Male
  • Middle Aged
  • Motor Activity / physiology
  • Motor Cortex / diagnostic imaging
  • Motor Cortex / pathology
  • Motor Cortex / physiopathology*
  • Neurofeedback / methods*
  • Neurofeedback / physiology
  • Neuronal Plasticity* / physiology
  • Organ Size
  • Proof of Concept Study
  • Putaminal Hemorrhage / diagnostic imaging
  • Putaminal Hemorrhage / physiopathology
  • Volition / physiology