Thus far, only 23 cases of the ectopic production of parathyroid hormone (PTH) have been reported. We have characterized the genome-wide transcription profile of an ectopic PTH-producing tumor originating from a retroperitoneal histiocytoma. We found that the calcium-sensing receptor (CaSR) was barely expressed in the tumor. Lack of CaSR, a crucial braking apparatus in the presence of both intraparathyroid and, probably, serendipitous PTH expression, might contribute strongly to the establishment and maintenance of the ectopic transcriptional activation of the PTH gene in nonparathyroid cells. Along with candidate drivers with a crucial frameshift mutation or copy number variation at specific chromosomal areas obtained from whole exome sequencing, we identified robust tumor-specific cytochrome P450 family 24 subfamily A member 1 (CYP24A1) overproduction, which was not observed in other non-PTH-expressing retroperitoneal histiocytoma and parathyroid adenoma samples. We then found a 2.5-kb noncoding RNA in the PTH 3'-downstream region that was exclusively present in the parathyroid adenoma and our tumor. Such a co-occurrence might act as another driver of ectopic PTH-producing tumorigenesis; both might release the control of PTH gene expression by shutting down the other branches of the safety system (e.g., CaSR and the vitamin D3-vitamin D receptor axis).
Keywords: CYP24A1; PTH; calcium-sensing receptor; ectopic production; lncRNA.