A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidopsis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75-92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response.