Eligibility criteria are important for clinical research protocols or clinical practice guidelines for determining who qualify for studies and to whom clinical evidence is applicable, but the free-text format is not amenable for computational processing. In this paper, we described a practical method for transforming free-text clinical research eligibility criteria of Alzheimer's clinical trials into a structured relational database compliant with standards for medical terminologies and clinical data models. We utilized a hybrid natural language processing system and a concept normalization tool to extract medical terms in clinical research eligibility criteria and represent them using the OMOP Common Data Model (CDM) v5. We created a database schema design to store syntactic relations to facilitate efficient cohort queries. We further discussed the potential of applying this method to trials on other diseases and the promise of using it to accelerate clinical research with electronic health records.
Keywords: Clinical Research Informatics; Electronic Health Record; Relational Data Management.