Diet reveals links between morphology and foraging in a cryptic temperate reef fish

Ecol Evol. 2017 Nov 15;7(24):11124-11134. doi: 10.1002/ece3.3604. eCollection 2017 Dec.

Abstract

Predators select prey so as to maximize energy and minimize manipulation time. In order to reduce prey detection and handling time, individuals must actively select their foraging space (microhabitat) and populations exhibit morphologies that are best suited for capturing locally available prey. We explored how variation in diet correlates with habitat type, and how these factors influence key morphological structures (mouth gape, eye diameter, fin length, fin area, and pectoral fin ratio) in a common microcarnivorous cryptic reef fish species, the triplefin Helcogrammoides cunninghami. In a mensurative experiment carried out at six kelp-dominated sites, we observed considerable differences in diet along 400 km of the Chilean coast coincident with variation in habitat availability and prey distributions. Triplefins preferred a single prey type (bivalves or barnacles) at northern sites, coincident with a low diversity of foraging habitats. In contrast, southern sites presented varied and heterogeneous habitats, where triplefin diets were more diverse and included amphipods, decapods, and cumaceans. Allometry-corrected results indicated that some morphological structures were consistently correlated with different prey items. Specifically, large mouth gape was associated with the capture of highly mobile prey such as decapods, while small mouth gape was more associated with cumaceans and copepods. In contrast, triplefins that capture sessile prey such as hydroids tend to have larger eyes. Therefore, morphological structures co-vary with habitat selection and prey usage in this species. Our study shows how an abundant generalist reef fish exhibits variable feeding morphologies in response to the distribution of potential habitats and prey throughout its range.

Keywords: diet; fish; foraging; kelp forest; microhabitat; morphological structures; phenotypic plasticity; temperate reefs.