Noroviruses (NoVs) are the main pathogens responsible for sporadic and epidemic nonbacterial gastroenteritis, causing an estimated 219,000 deaths annually worldwide. There is no commercially available vaccine for NoVs, due partly to the difficulty in establishing NoV cell culture models. The histo-blood group antigen (HBGA) blocking assay is used extensively to assess the protective potential of candidate vaccine-elicited antibodies, but there is still no widely used cellular evaluation model. In this study, we have established a cell line-based NoV vaccine evaluation model through the construction of human α1,2-fucosyltransferase 2-overexpressing 293T (293T-FUT2) cell lines. The 293T-FUT2 cells stably expressed H type 2 and Lewis y antigens. Virus-like particles (VLPs) of the NoV prototype strain genogroup I.1 (GI.1) and the predominant strains GII.4 and GII.17 could attach to the cell line efficiently in a dose-dependent manner. Importantly, antisera against these NoV VLPs could inhibit the attachment of the VLPs, where the inhibitory effects measured by the attachment inhibition assay correlated significantly with the antibody levels determined by the HBGA blocking assay. Collectively, our attachment inhibition assay could serve as a surrogate neutralization assay for the evaluation of NoV vaccines at the cellular level.
Keywords: cellular level; histo-blood group antigen; norovirus; vaccine evaluation model; α1,2-fucosyltransferase 2.