Motivation: Genomic analysis has become one of the major tools for disease outbreak investigations. However, existing computational frameworks for inference of transmission history from viral genomic data often do not consider intra-host diversity of pathogens and heavily rely on additional epidemiological data, such as sampling times and exposure intervals. This impedes genomic analysis of outbreaks of highly mutable viruses associated with chronic infections, such as human immunodeficiency virus and hepatitis C virus, whose transmissions are often carried out through minor intra-host variants, while the additional epidemiological information often is either unavailable or has a limited use.
Results: The proposed framework QUasispecies Evolution, Network-based Transmission INference (QUENTIN) addresses the above challenges by evolutionary analysis of intra-host viral populations sampled by deep sequencing and Bayesian inference using general properties of social networks relevant to infection dissemination. This method allows inference of transmission direction even without the supporting case-specific epidemiological information, identify transmission clusters and reconstruct transmission history. QUENTIN was validated on experimental and simulated data, and applied to investigate HCV transmission within a community of hosts with high-risk behavior. It is available at https://github.com/skumsp/QUENTIN.
Contact: [email protected] or [email protected] or [email protected] or [email protected].
Supplementary information: Supplementary data are available at Bioinformatics online.
Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.