The association between mutations of key driver genes and colorectal cancer (CRC) metastasis has been investigated by many studies. However, the results of these studies have been contradictory. Here, we perform a comprehensive analysis to screen key driver genes from the TCGA database and validate the roles of these mutations in CRC metastasis. Using bioinformatics analysis, we identified six key driver genes, namely APC, KRAS, BRAF, PIK3CA, SMAD4 and p53. Through a systematic search, 120 articles published by November 30, 2017, were included, which all showed roles for these gene mutations in CRC metastasis. A meta-analysis showed that KRAS mutations (combined OR 1.18, 95% CI 1.05-1.33) and p53 mutations (combined OR 1.49, 95% CI 1.23-1.80) were associated with CRC metastasis, including lymphatic and distant metastases. Moreover, CRC patients with a KRAS mutation (combined OR 1.29, 95% CI 1.13-1.47), p53 mutation (combined OR 1.35, 95% CI 1.06-1.72) or SMAD4 mutation (combined OR 2.04, 95% CI 1.41-2.95) were at a higher risk of distant metastasis. Subgroup analysis stratified by ethnic populations indicated that the BRAF mutation was related to CRC metastasis (combined OR 1.42, 95% CI 1.18-1.71) and distant metastasis (combined OR 1.51, 95% CI 1.20-1.91) in an Asian population. No significant association was found between mutations of APC or PIK3CA and CRC metastasis. In conclusion, mutations of KRAS, p53, SMAD4 and BRAF play significant roles in CRC metastasis and may be both potential biomarkers of CRC metastasis as well as therapeutic targets.
Keywords: Colorectal cancer; Comprehensive analysis; Key driver gene; Metastasis; Mutation.