Rationale: Burkholderia cenocepacia is an opportunistic pathogen that is commonly isolated from patients with cystic fibrosis (CF). Quorum sensing has been suggested to play a role in the activity of type II and type VI secretion systems and the release of virulence factors. Apart from the classical acyl homoserine lactone quorum sensing, B. cenocepacia also uses the diffusible signal factor system (DSF). Quantitative information on the true impact of DSF molecules on the release of ZmpA and other virulence factors is lacking.
Methods: Based on results of a label-free proteomics analysis addressing changes in the secretome in response to DSFs, a panel of peptides was selected to develop a microfluidics liquid chromatography/mass spectrometry (LC/MS) method implementing single reaction monitoring (SRM) to quantify B. cenocepacia virulence factors.
Results: Increase in secretion of virulence factors upon treatment with BDSF was observed for ZmpA and Aida, but not for ZmpB. Type VI secretion system dependent Hcp1 and TecA were decreased. However, non-physiological amounts of BDSF were needed to provoke the effect. DSFs from P. aeruginosa and S. maltophilia were also affecting virulence factor secretion, but the effect was smaller than for the endogenous BDSF.
Conclusions: Microfluidics-based SRM is a useful tool to quantitatively assess the impact of quorum sensing on the release of virulence factors by (opportunistic) pathogens.