Cancer immunotherapy has recently shown dramatic clinical success inducing durable response in patients of a wide variety of malignancies. Further improvement of the clinical outcome with immune related cancer treatment requests more exquisite manipulation of a patient's immune system with increased immunity against diseases while mitigating the toxicities. To meet this challenge, biomaterials applied to immunoengineering are being developed to achieve tissue- and/or cell-specific immunomodulation and thus could potentially enhance both the efficacy and safety of current cancer immunotherapies. Here, we review the recent advancement in the field of immunoengineering using biomaterials and their applications in promoting different modalities of cancer immunotherapies, with focus on cell-, antibody-, immunomodulator-, and gene-based immune related treatments and their combinations with conventional therapies. Challenges and opportunities are discussed in applying biomaterials engineering strategies in the development of future cancer immunotherapies. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Keywords: adoptive cell transfer; agonistic antibodies; biomaterials; cancer immunotherapy; combination therapy; immune checkpoint inhibitor; immuno-gene therapy; immunoengineering; immunomodulators.
© 2018 Wiley Periodicals, Inc.