Background: Spine surgery has the potential to benefit from additive manufacturing/3-dimensional printing (3DP) technology with complex anatomical pathologies requiring reconstruction, with the potential to customize surgery to reduce operative times, reduce blood loss, provide immediate stability, and potentially improve fusion rates. We report a unique case of intraoperative trial placement of a custom patient-specific implant (PSI) versus the final implantation of a customizable off-the-shelf (OTS) implant. Data collected for comparison included time to implant, ease of implantation, firmness of press-fit, and fixation options after implantation.
Case description: A 64-year-old man presented with low back pain. Computed tomography and magnetic resonance imaging revealed a solitary lesion in the L5 vertebral body, confirmed by positron emission tomography scan. Removal of the L5 vertebral body was performed, and reconstruction was achieved with an expandable cage. The time of implant insertion was minimal with the PSI (90 seconds) versus the OTS (>40 minutes). Immediate press-fit and "firmness" of implantation was clearly superior with the PSI, although this was an intraoperative subjective assessment. Other benefits include integral fixation that is predetermined with the PSI, reduced time and blood loss, and ease of bone grafting with a PSI.
Conclusions: Use of 3DP has been able to reduce operative time significantly. Surgeons can train before performing complex procedures, which enhances their presurgical planning, with the goal to maximize patient outcomes. When considering implants and prostheses, the use of 3DP allows a superior anatomical fit for the patient, with the potential to improve restoration of anatomy.
Keywords: 3D-printed spine implant; Additive manufacturing; Custom device; Patient-specific implant; Spine surgery; Vertebrectomy.
Copyright © 2018 Elsevier Inc. All rights reserved.