In vivo efficacy and evaluation of gel-cream containing dehydrated betamethasone dipropionate nanocapsules

J Microencapsul. 2018 Jan 29:1-34. doi: 10.1080/02652048.2018.1434246. Online ahead of print.

Abstract

This study aimed to develop gel-creams from the lyophilised product of betamethasone dipropionate-loaded lipid-core nanocapsule suspensions and evaluated its efficacy in a model of contact dermatitis. The gel-creams were prepared and characterized followed by a study of in vitro drug penetration/permeation and its in vivo efficacy. The suspensions and lyophilised products showed nanometric size; the betamethasone content was 0.25 ± 0.01 mg/mL and the encapsulation efficiency was approximately 100%. The nanocapsules and redispersed powders presented control of the drug release. The gel-creams presented pH between 6.0-6.5 and exhibited non-Newtonian flow behavior, following the Herschel-Bulkley model. The skin penetration/permeation study indicated that betamethasone dipropionate can reach different skin layers. For in vivo efficacy, the contact dermatitis model was capable of causing tissue damage with changes in enzyme activities of the purinergic system in lymphocytes. The gel-creams showed the best dermatological and immunological efficacy and reduced oxidative damage in the evaluated tissues.

Keywords: contact dermatitis; lipid-core nanocapsules; oxidative profile; skin delivery.