Objectives: As the adoption of robotic procedures becomes more widespread, additional risk related to the learning curve can be expected. This article reports the results of a Delphi process to define procedures to optimize robotic training of thoracic surgeons and to promote safe performance of established robotic interventions as, for example, lung cancer and thymoma surgery.
Methods: In June 2016, a working panel was spontaneously created by members of the European Society of Thoracic Surgeons (ESTS) and European Association for Cardio-Thoracic Surgery (EACTS) with a specialist interest in robotic thoracic surgery and/or surgical training. An e-consensus-finding exercise using the Delphi methodology was applied requiring 80% agreement to reach consensus on each question. Repeated iterations of anonymous voting continued over 3 rounds.
Results: Agreement was reached on many points: a standardized robotic training curriculum for robotic thoracic surgery should be divided into clearly defined sections as a staged learning pathway; the basic robotic curriculum should include a baseline evaluation, an e-learning module, a simulation-based training (including virtual reality simulation, Dry lab and Wet lab) and a robotic theatre (bedside) observation. Advanced robotic training should include e-learning on index procedures (right upper lobe) with video demonstration, access to video library of robotic procedures, simulation training, modular console training to index procedure, transition to full-procedure training with a proctor and final evaluation of the submitted video to certified independent examiners.
Conclusions: Agreement was reached on a large number of questions to optimize and standardize training and education of thoracic surgeons in robotic activity. The production of the content of the learning material is ongoing.