Melatonin Differentially Modulates NF-кB Expression in Breast and Liver Cancer Cells

Anticancer Agents Med Chem. 2018;18(12):1688-1694. doi: 10.2174/1871520618666180131112304.

Abstract

Background: NF-kB (nuclear factor kappa B) is a transcription factor composed of two subunits, p50 and p65, which plays a key role in the inflammatory process. Melatonin has oncostatic, antiangiogenic and antimetastatic properties, and some recent studies have indicated an inhibitory effect of melatonin on NF-kB in some types of cancer. This work aims to investigate the effects of melatonin treatment on the expression of NFkB in breast and liver cancer models.

Method: The breast cancer xenographic model was performed using female Balb/c nude athymic mice injected with MDA-MB-231 cells. The animals were treated with 40 mg/Kg of melatonin for 21 days. Volume of the tumors was measured with a digital caliper. Hepatocarcinoma model was developed by using the HepG2 cells in vitro, treated with 1 mM melatonin for 24 h. The expression of NF-kB protein was verified by immunohistochemistry and immunocytochemistry and quantified by optical densitometry, in vivo study and in vitro study, respectively. NF-kB gene expression was performed by quantitative RT-PCR.

Results: The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size (P=0.0022). There was a decrease in NF-kB protein staining (P=0.0027) and gene expression (P=0.0185) in mice treated with melatonin. The opposite results were observed for the hepatocarcinoma model. HepG2 cells treated with melatonin showed an increase in the NF-kB immunostaining when compared to control cells (P=0.0042).

Conclusion: Our results indicated that the treatment with melatonin was able to decrease both gene and protein expressions of NF-kB in breast cancer cells and, conversely, increase the transcription factor protein expression in hepatocarcinoma cells. These data highlighted a double role in the expression of NF-kB, depending on the cell type. Further studies are needed to better elucidate the action of melatonin in NF-kB, since this transcription factor acts on different signaling pathways that are fundamental for carcinogenesis.

Keywords: HepG2 cells; NF-kB; breast cancer; hepatocellular carcinoma; liver cancer; melatonin..

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Female
  • Humans
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Liver Neoplasms, Experimental / drug therapy
  • Liver Neoplasms, Experimental / metabolism
  • Liver Neoplasms, Experimental / pathology
  • Mammary Neoplasms, Experimental / drug therapy
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology
  • Melatonin / administration & dosage
  • Melatonin / chemistry
  • Melatonin / pharmacology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Molecular Structure
  • NF-kappa B / biosynthesis*
  • NF-kappa B / genetics
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • NF-kappa B
  • Melatonin