The human hippocampus is a key target of many imaging studies given its capacity for neurogenesis, role in long term potentiation and memory, and nearly ubiquitous involvement in neurological and psychiatric conditions. Diffusion tensor imaging (DTI) has detected microstructural abnormalities of the human hippocampus associated with various disorders, but acquisitions have typically been limited to low spatial resolution protocols designed for whole brain (e.g. > 2 mm isotropic, >8 mm3 voxels), limiting regional specificity and worsening partial volume effects. The purpose here was to develop a simple DTI protocol using readily available standard single-shot EPI at 3T, capable of yielding much higher spatial resolution images (1 x 1 x 1 mm3) of the human hippocampus in a 'clinically feasible' scan time of ~6 min. A thin slab of twenty 1 mm slices oriented along the long axis of the hippocampus enabled efficient coverage and a shorter repetition time, allowing more diffusion weighted images (DWIs) per slice per unit time. In combination with this strategy, a low b value of 500 s/mm2 was chosen to help overcome the very low SNR of a 1 x 1 x 1 mm3 EPI acquisition. 1 mm isotropic mean DWIs (averaged over 120-128 DWIs) showed excellent detail of the hippocampal architecture (e.g. morphology and digitations, sub-regions, stratum lacunosum moleculare - SLM) that was not readily visible on 2 mm isotropic diffusion images. Diffusion parameters within the hippocampus were consistent across subjects and fairly homogenous across sub-regions of the hippocampus (with the exception of the SLM and tail). However, it is expected that DTI parameters will be sensitive to microstructural changes associated with a number of clinical disorders (e.g. epilepsy, dementia) and that this practical, translatable approach for high resolution acquisition will facilitate localized detection of hippocampal pathology.
Keywords: CA; Cornu ammonis; DTI; Dentate gyrus; Diffusion acquisition; Diffusion tensor imaging; Hippocampal subfields; SLM; Stratum lacunosum moleculare.
Copyright © 2018 Elsevier Inc. All rights reserved.