Developmental Effects and Estrogenicity of Bisphenol A Alternatives in a Zebrafish Embryo Model

Environ Sci Technol. 2018 Mar 6;52(5):3222-3231. doi: 10.1021/acs.est.7b06255. Epub 2018 Feb 14.

Abstract

In order to understand the negative effects of bisphenol A (BPA) alternatives comprehensively, zebrafish embryos were used to assess the lethality, developmental effects, and estrogenic activity of bisphenol analogues. The in silico estrogenic activities of bisphenol analogues were assayed by binding simulation. According to our results, the lethality of bisphenol analogues decreased in order of bisphenol AF (BPAF) > BPA > bisphenol F (BPF) > bisphenol S (BPS). BPAF and BPF induced significant effects on zebrafish embryos, including decreased heart rate, hatching inhibition, and teratogenic effects. The binding potentials of bisphenol analogues toward zebrafish ERs (zfERS) decreased in the following order: BPAF > BPA > BPF > BPS. Among the three subtypes of zfERs, zfERβ2 showed the highest binding activity toward the bisphenols, followed by zfERα and zfERβ1. In vivo estrogenic activity tests showed that BPAF, BPA, and BPF significantly enhanced the protein levels of ERα along with the mRNA levels of esr1, esr2a, esr2b, and vtg1 in zebrafish embryos. Esr2b showed the strongest response to BPAF and BPA exposure among the three esrs. In contrast, BPS did not significantly regulate ER protein level or ER transcription. In conclusion, BPAF showed the highest lethality, developmental effects, and estrogenic activity (both in silico and in vivo) followed by BPA and BPF. BPS showed the weakest toxicity and estrogenic activity. zfERβ2 might act as the main target among the three ER subtypes of zebrafish after exposure to BPAF and BPA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Benzhydryl Compounds*
  • Biological Assay
  • Estrone
  • Phenols
  • Zebrafish*

Substances

  • Benzhydryl Compounds
  • Phenols
  • Estrone
  • bisphenol A