Venous thrombosis (VT) is a prevalent clinical condition with significant adverse sequela or mortality. Anticoagulation and pharmacologic or pharmacomechanical thrombolytic therapies are the mainstays of VT treatment. An understanding of thrombosis biology will allow for more effective VT-tailored diagnosis and therapy. In vivo models of thrombosis provide indispensable tools to study the pathogenesis of thrombus formation and to evaluate novel therapeutic or preventive adjuncts for VT management or prevention. In this article, we review the most prominent in vivo models of VT created in rodents and swine species and outline how each model can serve as a useful tool to promote our understanding of VT pathogenesis and to examine novel therapies.
Keywords: Veins; blood coagulation; experimental animal models; thrombolytic therapy; thrombosis; venous thrombosis (VT).