yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae

Biochim Biophys Acta Bioenerg. 2018 Apr;1859(4):270-279. doi: 10.1016/j.bbabio.2018.01.008. Epub 2018 Feb 2.

Abstract

The yeast Saccharomyces cerevisiae genome is endowed with two distinct isoforms of Voltage-Dependent Anion Channel (VDAC). The isoform yVDAC2 is currently understudied with respect to the best known yVDAC1. Yet, since the discovery, the function of yVDAC2 was unclear, leading to the hypothesis that it might be devoid of a channel function. In this work we have elucidated, by bioinformatics modeling and electrophysiological analysis, the functional activity of yVDAC2. The conformation of yVDAC2 and, for comparison, of yVDAC1 were modeled using a multiple template approach involving mouse, human and zebrafish structures and both showed to arrange the sequences as the typical 19-stranded VDAC β-barrel. Molecular dynamics simulations showed that yVDAC2, in comparison with yVDAC1, has a different number of permeation paths of potassium and chloride ions. yVDAC2 protein was over-expressed in the S. cerevisiae cells depleted of functional yVDAC1 (Δpor1 mutant) and, after purification, it was reconstituted in artificial membranes (planar lipid bilayer (PLB) system). The protein displayed channel-forming activity and the calculated conductance, voltage-dependence and ion selectivity values were similar to those of yVDAC1 and other members of VDAC family. This is the first time that yVDAC2 channel features are detected and characterized.

Keywords: Molecular dynamics; Outer mitochondrial membrane (OMM); Yeast VDAC isoforms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding Sites
  • Chlorides / chemistry
  • Chlorides / metabolism
  • Computational Biology
  • Gene Expression
  • Humans
  • Ion Transport
  • Kinetics
  • Lipid Bilayers / chemistry
  • Lipid Bilayers / metabolism
  • Mice
  • Mitochondria / chemistry*
  • Mitochondria / metabolism
  • Mitochondrial Membranes / chemistry*
  • Mitochondrial Membranes / metabolism
  • Molecular Dynamics Simulation
  • Potassium / chemistry
  • Potassium / metabolism
  • Protein Binding
  • Protein Conformation, beta-Strand
  • Protein Interaction Domains and Motifs
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Saccharomyces cerevisiae / chemistry
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Structural Homology, Protein
  • Voltage-Dependent Anion Channel 1 / chemistry*
  • Voltage-Dependent Anion Channel 1 / genetics
  • Voltage-Dependent Anion Channel 1 / metabolism
  • Voltage-Dependent Anion Channel 2 / chemistry*
  • Voltage-Dependent Anion Channel 2 / genetics
  • Voltage-Dependent Anion Channel 2 / metabolism
  • Zebrafish

Substances

  • Chlorides
  • Lipid Bilayers
  • Recombinant Proteins
  • Saccharomyces cerevisiae Proteins
  • Voltage-Dependent Anion Channel 2
  • Voltage-Dependent Anion Channel 1
  • Potassium