Purpose: Chronic low-dose-rate (20 mGy/day) γ-irradiation increases the incidence of hepatocellular adenomas (HCA) in female B6C3F1 mice. The purpose of this study is to identify potential serum biomarkers for these HCAs by a new approach.
Material and methods: Microarray analysis were performed to compare the gene expression profiles of HCAs from mice exposed to low-dose-rate γ-rays with those of normal livers from non-irradiated mice. From the differentially expressed genes, those for possibly secretory proteins were selected. Then, the levels of the proteins in sera were analysed by ELISA.
Results: Microarray analysis identified 4181 genes differentially expressed in HCAs (>2.0-fold). From these genes, those for α-fetoprotein (Afp), α-1B-glycoprotein (A1bg) and serine peptidase inhibitor Kazal type-3 (Spink3) were selected as the genes for candidate proteins. ELISA revealed that the levels of Afp and A1bg proteins in sera significantly increased and decreased, respectively, in low-dose-rate irradiated mice with HCAs and also same tendency was observed in human patients with hepatocellular carcinomas.
Conclusion: These results indicate that A1bg could be a new serum biomarker for liver tumor. This new approach of using microarray to select genes for secretory proteins is useful for prediction of novel tumor markers in sera.
Keywords: Low-dose-rate γ-irradiation; biomarkers; hepatocellular adenoma.