The membrane skeleton forms a scaffold on the cytoplasmic side of the plasma membrane. The erythrocyte membrane represents an archetype of such structural organization. It has been documented that a similar membrane skeleton also exits in the Golgi complex. It has been previously shown that βII spectrin and ankyrin G are localized at the lateral membrane of human bronchial epithelial cells. Here we show that protein 4.1N is also located at the lateral membrane where it associates E-cadherin, β-catenin and βII spectrin. Importantly, depletion of 4.1N by RNAi in human bronchial epithelial cells resulted in decreased height of lateral membrane, which was reversed following re-expression of mouse 4.1N. Furthermore, although the initial phase of lateral membrane biogenesis proceeded normally in 4.1N-depleted cells, the final height of the lateral membrane of 4.1N-depleted cells was shorter compared to that of control cells. Our findings together with previous findings imply that 4.1N, βII spectrin and ankyrin G are structural components of the lateral membrane skeleton and that this skeleton plays an essential role in the assembly of a fully functional lateral membrane.
Keywords: Human bronchial epithelial cells; Lateral membrane; Protein 4.1N.
Copyright © 2018 Elsevier B.V. All rights reserved.