Ruthenium-Tungsten Composite Catalyst for the Efficient and Contamination-Resistant Electrochemical Evolution of Hydrogen

ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6354-6360. doi: 10.1021/acsami.7b17970. Epub 2018 Feb 12.

Abstract

A new catalyst, prepared by a simple physical mixing of ruthenium (Ru) and tungsten (W) powders, has been discovered to interact synergistically to enhance the electrochemical hydrogen evolution reaction (HER). In an aqueous 0.5 M H2SO4 electrolyte, this catalyst, which contained a miniscule loading of 2-5 nm sized Ru nanoparticles (5.6 μg Ru per cm2 of geometric surface area of the working electrode), required an overpotential of only 85 mV to drive 10 mA/cm2 of H2 evolution. Interestingly, our catalyst also exhibited good immunity against deactivation during HER from ionic contaminants, such as Cu2+ (over 24 h). We unravel the mechanism of synergy between W and Ru for catalyzing H2 evolution using Cu underpotential deposition, photoelectron spectroscopy, and density functional theory (DFT) calculations. We found a decrease in the d-band and an increase in the electron work function of Ru in the mixed composite, which made it bind to H more weakly (more Pt-like). The H-adsorption energy on Ru deposited on W was found, by DFT, to be very close to that of Pt(111), explaining the improved HER activity.

Keywords: Ru−W; bimetallic catalysts; electrocatalysts; hydrogen evolution reaction; water electrolysis.