Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems, relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum1-9. In the quantum limit, the spin lifetime is determined by phononic vacuum fluctuations 10 . However, this limit was not observed in previous studies due to thermal phonon contributions11-13 or phonon-bottleneck processes10, 14,15. Here we use a dispersive detection scheme16,17 based on cavity quantum electrodynamics18-21 to observe this quantum limit of spin relaxation of the negatively charged nitrogen vacancy (NV-) centre 22 in diamond. Diamond possesses high thermal conductivity even at low temperatures 23 , which eliminates phonon-bottleneck processes. We observe exceptionally long longitudinal relaxation times T1 of up to 8 h. To understand the fundamental mechanism of spin-phonon coupling in this system we develop a theoretical model and calculate the relaxation time ab initio. The calculations confirm that the low phononic density of states at the NV- transition frequency enables the spin polarization to survive over macroscopic timescales.