The public concern about pollen-mediated gene flow (PGF) from genetically modified (GM) crops to non-GM crops heats up in recent years over China. In the current study, we conducted greenhouse and field experiments to measure PGF with various physical isolation measures, including 90, 80, 60 and 40 holes/cm2 separation nets and Sorghum bicolor, Zea mays and Lycopersicon esculentum separation crops between GM cotton and non-GM line (Shiyuan321) by seed DNA test during 2013 to 2015, and pollen grain dyeing was also conducted to assess the pollen flow in greenhouse during 2013. Our results revealed that (1) PGF varied depending on the physical isolation measures. PGF was the lowest with 90 holes/cm2 separation net and S. bicolor separation crop, and the highest with 40 holes/cm2 separation net and no isolation measure. (2) Similar to PGF results, 90 holes/cm2 separation net and S. bicolor separation crop could minimize the pollen dispersal. (3) PGF declined exponentially with increasing distance between GM cotton and Shiyuan321. Because of the production mode of farm household (limited cultivated area) in China, our study is particularly important, which is not only benefit for constraining PGF, but also has potential application value in practical production and the scientific researches.