Potentiating prostate cancer immunotherapy with oncolytic viruses

Nat Rev Urol. 2018 Apr;15(4):235-250. doi: 10.1038/nrurol.2018.10. Epub 2018 Feb 13.

Abstract

The clinical effectiveness of immunotherapies for prostate cancer remains subpar compared with that for other cancers. The goal of most immunotherapies is the activation of immune effectors, such as T cells and natural killer cells, as the presence of these activated mediators positively correlates with patient outcomes. Clinical evidence shows that prostate cancer is immunogenic, accessible to the immune system, and can be targeted by antitumour immune responses. However, owing to the detrimental effects of prostate-cancer-associated immunosuppression, even the newest immunotherapeutic approaches fail to initiate the clinically desired antitumour immune reaction. Oncolytic viruses, originally used for their preferential cancer-killing activity, are now being recognized for their ability to overturn cancer-associated immune evasion and promote otherwise absent antitumour immunity. This oncolytic-virus-induced subversion of tumour-associated immunosuppression can potentiate the effectiveness of current immunotherapeutics, including immune checkpoint inhibitors (for example, antibodies against programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1), and cytotoxic T lymphocyte antigen 4 (CTLA4)) and chemotherapeutics that induce immunogenic cell death (for example, doxorubicin and oxaliplatin). Importantly, oncolytic-virus-induced antitumour immunity targets existing prostate cancer cells and also establishes long-term protection against future relapse. Hence, the strategic use of oncolytic viruses as monotherapies or in combination with current immunotherapies might result in the next breakthrough in prostate cancer immunotherapy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Immunity, Cellular*
  • Immunotherapy / methods*
  • Male
  • Oncolytic Virotherapy / methods*
  • Oncolytic Viruses*
  • Prostatic Neoplasms / therapy*