Objective: This aimed to describe the prenatal diagnosis of three cases of Apert syndrome using two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), and 3D virtual/physical models.
Methods: We retrospectively analyzed three cases of Apert syndrome at our service. The prenatal diagnostic methods used were 2D ultrasound, 3D ultrasound in conventional and HDlive rendering modes, T2-weighted MRI sequences, and 3D virtual/physical models from MRI or 3D ultrasound scan data. All imaging methods were performed by one observer. All prenatal diagnoses were confirmed by autopsy in cases of termination of pregnancy or genetic assessment during the postnatal period.
Results: Mean ± standard deviation of maternal and gestational age at the time of diagnosis was 36.5 ± 3.5 years and 32 ± 4.2 weeks, respectively. Main 2D/3D ultrasound and MRI findings were craniosynostosis, hypertelorism, low ear implantation, increased kidneys dimensions, and syndactyly of hands and feet. 3D virtual/physical models allowed 3D view of fetal head and extremity abnormalities. Termination of pregnancy occurred in two cases.
Conclusion: Prenatal 3D ultrasound and MRI enabled the identification of all Apert syndrome phenotypes. 3D virtual/physical models provided both the parents and the medical team a better understanding of fetal abnormalities.
Keywords: Apert syndrome; Magnetic resonance imaging; Physical models; Prenatal diagnosis; Three-dimensional ultrasound.