A dinuclear gadolinium(III) chelate containing two moieties of diethylenetriaminepentaacetic acid (DTPA), covalently conjugated to an analogue of deoxycholic acid, was synthesized and thoroughly characterized. A full relaxometric analysis was carried out, consisting of 1) the acquisition of nuclear magnetic resonance dispersion (NMRD) profiles in various media; 2) the study of binding affinity to serum albumin; 3) the measurement of 17 O transverse relaxation rate versus temperature, and 4) a transmetallation assay. In vivo biodistribution MRI studies at 1 T and blood pharmacokinetics assays were carried out in comparison with Gd-DTPA (Magnevist) and gadocoletic acid trisodium salt (B22956/1), two well-known Gd complexes that share the same chelating cage and the same deoxycholic acid residue of the Gd complex investigated herein ((GdDTPA)2 -Chol). High affinity for plasma protein and, in particular, the availability of more than one binding site, allows the complex to reach a fairly high relaxivity value in plasma (∼20 mm-1 s-1 , 20 MHz, 310 K) as well as to show unexpectedly enhanced properties of blood pooling, with an elimination half-life in rats approximately seven times longer than that of B22956/1.
Keywords: GBCAs; blood pool; dinuclear; gadolinium; magnetic resonance imaging.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.