Down syndrome (DS) results from the triplication of genes located on human chromosome 21 (Hsa21). Though many cognitive and behavioral impairments are associated with DS, sleep disturbances remain poorly understood despite being a reported phenotype in approximately 60% of individuals diagnosed with DS. In this study, sleep and electroencephalography (EEG) oscillations were recorded from aged (12-14 mos.) Dp(16)1Yey/+ mice (Dp16), a mouse model of DS. We observed disrupted sleep demonstrated by increased activity during the dark phase and increased time awake at the expense of NREM sleep compared to wild-type mice. In addition, we found that Dp16 mice display significant differences in relative EEG power distribution among oscillation frequencies in both sleep and awake states. These results in Dp16 mice are consistent with sleep disturbances found in individuals with DS, and the abnormal EEG oscillations in aged Dp16 mice suggest a potential role for GABAergic activity in these sleep and EEG abnormalities. These sleep and EEG data reflect underlying differences in neuronal activity at the network level and thus are causative agents rather than merely symptoms of DS.
Keywords: Down syndrome; Dp16; EEG; beta; sleep; spectral power.
Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.