Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes

Stem Cell Reports. 2018 Mar 13;10(3):794-807. doi: 10.1016/j.stemcr.2018.01.016. Epub 2018 Feb 15.

Abstract

Cardiac hypertrophy accompanies many forms of cardiovascular diseases. The mechanisms behind the development and regulation of cardiac hypertrophy in the human setting are poorly understood, which can be partially attributed to the lack of a human cardiomyocyte-based preclinical test system recapitulating features of diseased myocardium. The objective of our study is to determine whether human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to mechanical stretch can be used as an adequate in vitro model for studying molecular mechanisms of cardiac hypertrophy. We show that hESC-CMs subjected to cyclic stretch, which mimics mechanical overload, exhibit essential features of a hypertrophic state on structural, functional, and gene expression levels. The presented hESC-CM stretch approach provides insight into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays groundwork for the development of pharmacological approaches as well as for discovering potential circulating biomarkers of cardiac dysfunction.

Keywords: cardiomyocytes stretch response; human cardiomyocytes; hypertrophy; in vitro disease modeling; mechanotransduction; stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers / metabolism
  • Cardiomegaly / metabolism
  • Cardiomegaly / pathology*
  • Cell Differentiation / physiology
  • Gene Expression / physiology
  • Human Embryonic Stem Cells / metabolism
  • Human Embryonic Stem Cells / pathology*
  • Humans
  • Mechanotransduction, Cellular / physiology
  • Myocardium / metabolism
  • Myocardium / pathology*
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology*

Substances

  • Biomarkers