A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy

Cell Res. 2018 Apr;28(4):416-432. doi: 10.1038/s41422-018-0011-0. Epub 2018 Feb 22.

Abstract

It is assumed that anti-CTLA-4 antibodies cause tumor rejection by blocking negative signaling from B7-CTLA-4 interactions. Surprisingly, at concentrations considerably higher than plasma levels achieved by clinically effective dosing, the anti-CTLA-4 antibody Ipilimumab blocks neither B7 trans-endocytosis by CTLA-4 nor CTLA-4 binding to immobilized or cell-associated B7. Consequently, Ipilimumab does not increase B7 on dendritic cells (DCs) from either CTLA4 gene humanized (Ctla4 h/h ) or human CD34+ stem cell-reconstituted NSG™ mice. In Ctla4 h/m mice expressing both human and mouse CTLA4 genes, anti-CTLA-4 antibodies that bind to human but not mouse CTLA-4 efficiently induce Treg depletion and Fc receptor-dependent tumor rejection. The blocking antibody L3D10 is comparable to the non-blocking Ipilimumab in causing tumor rejection. Remarkably, L3D10 progenies that lose blocking activity during humanization remain fully competent in inducing Treg depletion and tumor rejection. Anti-B7 antibodies that effectively block CD4 T cell activation and de novo CD8 T cell priming in lymphoid organs do not negatively affect the immunotherapeutic effect of Ipilimumab. Thus, clinically effective anti-CTLA-4 mAb causes tumor rejection by mechanisms that are independent of checkpoint blockade but dependent on the host Fc receptor. Our data call for a reappraisal of the CTLA-4 checkpoint blockade hypothesis and provide new insights for the next generation of safe and effective anti-CTLA-4 mAbs.

MeSH terms

  • Animals
  • Antibodies, Blocking / immunology
  • Antibodies, Blocking / therapeutic use*
  • Antineoplastic Agents, Immunological / immunology
  • Antineoplastic Agents, Immunological / therapeutic use*
  • CD4-Positive T-Lymphocytes / drug effects
  • CD4-Positive T-Lymphocytes / immunology
  • CD4-Positive T-Lymphocytes / pathology
  • CD8-Positive T-Lymphocytes / drug effects
  • CD8-Positive T-Lymphocytes / immunology
  • CD8-Positive T-Lymphocytes / pathology
  • CTLA-4 Antigen / antagonists & inhibitors
  • CTLA-4 Antigen / immunology*
  • Female
  • Humans
  • Immunotherapy / methods
  • Ipilimumab / immunology
  • Ipilimumab / therapeutic use*
  • Lymphocyte Activation / drug effects
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Neoplasms / immunology
  • Neoplasms / pathology
  • Neoplasms / therapy*
  • T-Lymphocytes, Regulatory / drug effects
  • T-Lymphocytes, Regulatory / immunology
  • T-Lymphocytes, Regulatory / pathology

Substances

  • Antibodies, Blocking
  • Antineoplastic Agents, Immunological
  • CTLA-4 Antigen
  • Ipilimumab