Purpose: The purpose of this study is to determine whether iterative model reconstruction (IMR) optimized for brain CT could improve the detection of acute stroke in the setting of thin image slices and narrow window settings.
Methods: We retrospectively reviewed 27 patients who presented acute middle cerebral artery (MCA) stroke. Images were reconstructed using filtered back projection (FBP; 1- and 5-mm slice thickness) and IMR (1 mm thickness), and contrast-to-noise ratios (CNRs) of infarcted and non-infarcted areas were compared. To analyze the performance of acute MCA stroke detection, we used receiver operating characteristic (ROC) curve techniques and compared 5-mm FBP with standard and narrow window settings, and 1-mm FBP and IMR with narrow window settings.
Results: The CNR in 1-mm IMR (1.1 ± 1.0) was significantly higher than in 5- (0.8 ± 0.7) and 1-mm FBP (0.4 ± 0.4) (p < 0.001). Furthermore, the average area under the ROC curve was significantly higher with 1-mm IMR with narrow window settings (0.90, 95% CI: 0.86, 0.94) than it was with 5-mm FBP (0.78, 95% CI: 0.72, 0.83).
Conclusion: The combination of thin image slices and narrow window settings under IMR reconstruction provide better diagnostic performance for acute MCA stroke than conventional reconstruction methods.
Keywords: Acute stroke; Computed tomography; Image processing; Thin slice images; Window and level settings.