Receptor tyrosine kinase FGFR3 is involved in many signaling networks and is frequently mutated in developmental disorders and cancer. The Hsp90/Cdc37 chaperone system is essential for function of normal and neoplastic cells. Here we uncover the mechanistic inter-relationships between these proteins by combining approaches including NMR, HDX-MS, and SAXS. We show that several disease-linked mutations convert FGFR3 to a stronger client, where the determinant underpinning client strength involves an allosteric network through the N-lobe and at the lobe interface. We determine the architecture of the client kinase/Cdc37 complex and demonstrate, together with site-specific information, that binding of Cdc37 to unrelated kinases induces a common, extensive conformational remodeling of the kinase N-lobe, beyond localized changes and interactions within the binary complex. As further shown for FGFR3, this processing by Cdc37 deactivates the kinase and presents it, in a specific orientation established in the complex, for direct recognition by Hsp90.
Keywords: Cdc37 cochaperone; Hsp90 chaperone; cancer; client kinases; disease-linked mutations; fibroblast growth factor receptors; protein folding; structural and mechanistic insights.
Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.