Background: Several far lateral approaches have been proposed to deal with cranio-vertebral junction (CVJ) tumors including the basic, transcondylar, and supracondylar far lateral approaches (B-FLA, T-FLA, and S-FLA). However, the indications on when to use one versus the other are not well systematized yet. Our purpose is to evaluate in an experimental cadaveric setting which approach is best suited to remove tumors of different sizes.
Methods: We implanted at the CVJ, using a transoral approach, tumor models of different sizes (five 1-cm3 and five 3-cm3 tumors) in ten embalmed cadaveric heads. The artificial tumors were exposed via the three approaches using endoscopic-assisted microneurosurgical technique and neuronavigation. The skull base area exposed and the maneuverability linked to each approach were evaluated using neuronavigation.
Results: In 1-cm3 tumors, the T-FLA and the S-FLA exposed a significantly larger skull base area than the B-FLA both using the microscope and the endoscope (P < 0.05); the T-FLA executed with the microscope provided wider vertical and horizontal maneuverability than the B-FLA (P = 0.030 and 0.017, respectively); the S-FLA executed with the endoscope provided wider vertical maneuverability than the T-FLA (P = 0.031). The S-FLA executed using the microscope and the endoscope provided wider vertical maneuverability than the B-FLA both in 1 and 3-cm3 tumors (P < 0.05).
Conclusions: In 1-cm3 tumors, the S-FLA and the T-FLA expose a wider skull base area than the B-FLA. In larger tumors, the exposure is similar for all three approaches. Use of the endoscope in an assistive mode may further increase the surgical exposure and maneuverability.
Keywords: Craniovertebral junction; Endoscopic assisted microsurgery; Far lateral approach; Neuronavigation; Tumor model.