Accelerating 3D-T mapping of cartilage using compressed sensing with different sparse and low rank models

Magn Reson Med. 2018 Oct;80(4):1475-1491. doi: 10.1002/mrm.27138. Epub 2018 Feb 25.

Abstract

Purpose: To evaluate the feasibility of using compressed sensing (CS) to accelerate 3D-T mapping of cartilage and to reduce total scan times without degrading the estimation of T relaxation times.

Methods: Fully sampled 3D-T datasets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared, including finite differences, temporal and spatial wavelets, learned transforms using principal component analysis (PCA) and K-means singular value decomposition (K-SVD), explicit exponential models, low rank and low rank plus sparse models. Spatial filtering prior to T parameter estimation was also tested. Synthetic phantom (n = 6) and in vivo human knee cartilage datasets (n = 7) were included.

Results: Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative T error lower than 4.5%. Some sparsifying transforms, such as spatiotemporal finite difference (STFD), exponential dictionaries (EXP) and low rank combined with spatial finite difference (L+S SFD) significantly improved this performance, reaching average relative T error below 6.5% on T relaxation times with AF up to 10, when spatial filtering was used before T fitting, at the expense of smoothing the T maps. The STFD achieved 5.1% error at AF = 10 with spatial filtering prior to T fitting.

Conclusion: Accelerating 3D-T mapping of cartilage with CS is feasible up to AF of 10 when using STFD, EXP or L+S SFD regularizers. These three best CS methods performed satisfactorily on synthetic phantom and in vivo knee cartilage for AFs up to 10, with T error of 6.5%.

Keywords: T1ρ relaxation; compressed sensing; low rank models; sparse reconstruction.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Algorithms
  • Cartilage, Articular / diagnostic imaging*
  • Databases, Factual
  • Humans
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging
  • Young Adult