A Comparison of Surface Infrared with Rectal Thermometry in Dogs

Niger J Physiol Sci. 2017 Dec 30;32(2):123-127.

Abstract

Accurate determination of temperature is crucial in the diagnosis of febrile conditions. Although fewer techniques have proven as useful and reliable a predictor of core body temperature as the rectal thermometry, the process of obtaining the rectal temperature could be stressful in dogs. The infrared thermometry is a noncontact device used for measuring body temperature, with advantages which include speed, convenience, and reduced stress to the animals and reduced occupational risks to the animal handler. Therefore, there is the need to assess the consistency and agreement between non-contact infrared thermometry and traditional rectal thermometry in body temperature estimation. This study compared and assessed the sensitivity of non-contact infrared thermometer used on the forehead and nasal regions respectively with that of a rectal thermometer in dogs for body temperature estimation. One hundred and thirty (130) dogs presented for veterinary attention at the Veterinary Teaching Hospital (VTH), University of Ibadan, Nigeria were enrolled in this study during August to September 2014, irrespective of sex, age, breed or health status. Temperatures of dogs presented at the clinic were obtained using both multiple non-contact infrared thermometric measures obtained in the nasal and frontal head regions; and by rectal temperature. A multivariate cross-matrix analysis was used to assess the difference in measurements between the rectal thermometry and non-contact infrared thermometry. Descriptive statistics was used to compare variation and trend regularity of the nasal and fore-head infrared thermometry. A logistic regression of the difference in measurements was computed at 95% confidence interval and P<0.05. The mean difference revealed that the rectal temperature was 5.330C higher than the non-contact infrared forehead-based temperature and 7.570C higher than nasal-based temperature measurements respectively. The Bland-Altman (B-A) plot showed that the 95% limits of agreement between the frontal and nasal obtained infrared laser thermometry methods. Temperature measure obtained using non-contact infrared thermometry (forehead and nasal region of the head) was poor in consistency and agreement compared to rectal thermometry. Usefulness of non-contact forehead infrared thermometry in routine clinical practice as a close estimate of core body temperature depends on accurate calibration and therefore not recommended.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Body Temperature / physiology*
  • Dogs
  • Female
  • Fever / physiopathology*
  • Head / physiology*
  • Infrared Rays
  • Male
  • Nigeria
  • Rectum*
  • Thermography / methods
  • Thermometers*