Spectral entropy (SE) allows comparing task-related modulation of electroencephalogram (EEG) between patients and controls, i.e. spectral changes of the EEG associated to task performance. A SE modulation deficit has been replicated in different schizophrenia samples. To investigate the underpinnings of SE modulation deficits in schizophrenia, we applied graph-theory to EEG recordings during a P300 task and fractional anisotropy (FA) data from diffusion tensor imaging in 48 patients (23 first episodes) and 87 healthy controls. Functional connectivity was assessed from phase-locking values among sensors in the theta band, and structural connectivity was based on FA values for the tracts connecting pairs of regions. From those data, averaged clustering coefficient (CLC), characteristic path-length (PL) and connectivity strength (CS, also known as density) were calculated for both functional and structural networks. The corresponding functional modulation values were calculated as the difference in SE and CLC, PL and CS between the pre-stimulus and response windows during the task. The results revealed a higher functional CS in the pre-stimulus window in patients, predictive of smaller modulation of SE in this group. The amount of increase in theta CS from pre-stimulus to response related to SE modulation in patients and controls. Structural CLC was associated with SE modulation in the patients. SE modulation was predictive of negative symptoms, whereas CLC and PL modulation was associated with cognitive performance in the patients. These results support that a hyperactive functional connectivity and/or structural connective deficits in the patients hamper the dynamical modulation of connectivity underlying cognition.
Keywords: Connectivity; Entropy; Fractional anisotropy; Graph-theory; Negative symptoms; Schizophrenia.