Ethanol Controls the Self-Assembly and Mesoscopic Properties of Human Insulin Amyloid Spherulites

J Phys Chem B. 2018 Mar 29;122(12):3101-3112. doi: 10.1021/acs.jpcb.8b01779. Epub 2018 Mar 15.

Abstract

Protein self-assembly into amyloid fibrils or highly hierarchical superstructures is closely linked to neurodegenerative pathologies as Alzheimer's and Parkinson's diseases. Moreover, protein assemblies also emerged as building blocks for bioinspired nanostructured materials. In both the above mentioned fields, the main challenge is to control the growth and properties of the final protein structure. This relies on a more fundamental understanding of how interactions between proteins can determine structures and functions of biomolecular aggregates. Here, we identify a striking effect of the hydration of the single human insulin molecule and solvent properties in controlling hydrophobicity/hydrophilicity, structures, and morphologies of a superstructure named spherulite, observed in connection to Alzheimer's disease. Depending on the presence of ethanol, such structures can incorporate fluorescent molecules with different physicochemical features and span a range of mechanical properties and morphologies. A theoretical model providing a thorough comprehension of the experimental data is developed, highlighting a direct connection between the intimate physical protein-protein interactions, the growth, and the properties of the self-assembled superstructures. Our findings indicate structural variability as a general property for amyloid-like aggregates and not limited to fibrils. This knowledge is pivotal not only for developing effective strategies against pathological amyloids but also for providing a platform to design highly tunable biomaterials, alternative to elongated protein fibrils.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid / chemical synthesis*
  • Amyloid / chemistry
  • Circular Dichroism
  • Ethanol / chemistry*
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Insulins / chemical synthesis*
  • Insulins / chemistry
  • Microscopy, Atomic Force
  • Microscopy, Confocal
  • Microscopy, Electron, Transmission
  • Neutron Diffraction
  • Optical Imaging
  • Scattering, Small Angle
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Amyloid
  • Insulins
  • Ethanol