A comparative study on subacute toxicity of arsenic trioxide and dimethylarsinic acid on antioxidant status in Crandell Rees feline kidney (CRFK), human hepatocellular carcinoma (PLC/PRF/5), and epithelioma papulosum cyprini (EPC) cell lines

J Toxicol Environ Health A. 2018;81(10):333-348. doi: 10.1080/15287394.2018.1442758. Epub 2018 Mar 2.

Abstract

Arsenic (As) is a global contaminant of terrestrial and aquatic environments posing concern for environmental and human health. The effects of subacute concentrations of arsenic trioxide (AsIII) and dimethylarsinic acid (DMAV) were examined using Crandell Rees feline kidney (CRFK), human hepatocellular carcinoma (PLC/PRF/5), and epithelioma papulosum cyprini (EPC). Whole monolayer with suffering cells (confluence 100%, pyknosis and refractive cells; value scale = 2) led to identification of subacute As concentrations for the three cell lines. The selected AsIII concentrations were 1.33 µM for CRFK and 33.37 µM for PLC/PRF/5 and EPC, at 48 hr time point. The selected DMAV concentrations were 0.67 mM for PLC/PRF/5, 1.33 mM for CRFK, and 2.67 mM for EPC for 48 hr. Unlike the AsIII test, the three cell lines did not exhibit marked susceptibility to DMAV-mediated toxicity. Several oxidative stress biomarker levels, directly or indirectly associated with reactive oxygen species (ROS) elimination including superoxide dismutase, catalase, glutathione peroxidases, glutathione reductase, glutathione S-transferase, glyoxalase I, glyoxalase II, and total glutathione, were determined in the three cell lines at 24 and 48 hr. Antioxidant responses in metal-treated cells were significantly altered compared to controls, suggesting a perturbation of redox state. The weakening of antioxidant pathway in either healthy or tumoral cells was greater using AsIII than DMAV. Differences in level of several oxidative stress biomarkers suggest that the oxidative stress mechanism induced by AsIII is distinctly different from DMAV. Multifaceted mechanisms of action underlying ROS generation in tumor and nontumor cells versus AsIII and DMAV exposure are thus involved. Since As-mediated toxicity is quite complex, more data regarding both oxidant-enhancement and oxidant-lowering strategies may be useful to improve knowledge regarding the influence of As on human and animal cells.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Arsenic Trioxide / metabolism
  • Arsenic Trioxide / toxicity*
  • Biomarkers
  • Biotransformation
  • Cacodylic Acid / metabolism
  • Cacodylic Acid / toxicity*
  • Cats
  • Cell Line
  • Cell Line, Tumor
  • Cyprinidae
  • Environmental Pollutants / metabolism
  • Environmental Pollutants / toxicity*
  • Humans
  • Oxidative Stress / drug effects*
  • Pesticides / metabolism
  • Pesticides / toxicity
  • Toxicity Tests, Subacute*

Substances

  • Antioxidants
  • Biomarkers
  • Environmental Pollutants
  • Pesticides
  • Cacodylic Acid
  • Arsenic Trioxide