DNA methylation may predispose to multiple sclerosis (MS), as aberrant methylation in the promoter regions across the genome seems to underlie several processes of MS. We have currently determined the methylation status of eight genes in relapsing-remitting MS patients. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was used to determine the status of 31 CpG islands, located across eight genes, in 33 healthy individuals and 66 MS patients (33 in relapse and 33 in remission). The methylation levels in the examined sites ranged from 0 to 31%. Methylation positivity for RUNX3 and CDKN2A differed significantly between MS patients and healthy controls. Maximum methylation in RUNX3, CDKN2A, SOCS1, and NEUROG1 genes was significantly different between patients and controls. Roc curves demonstrated that the appropriate cut-offs to distinguish patients from healthy controls were 2% for RUNX3 (OR 3.316, CI 1.207-9.107, p = 0.024) and 3% for CDKN2A (OR 3.077, CI 1.281-7.39, p = 0.018). No difference in methylation was observed between patients in relapse and patients in remission, in any of the genes examined. Methylation patterns of RUNX3 and CDKN2A may be able to distinguish between MS patients and healthy controls, but not between MS patients in relapse and in remission. Graphical Abstract Methylation patterns of RUNX3 and CDKN2A may be able to discriminate healthy individuals from MS patients.
Keywords: CDKN2A; CpG islands; DNA methylation; Epigenetics; Multiple sclerosis; RUNX3.