Background/aims: Multiple sclerosis (MS) is an autoimmune disease in the central nervous system associated with demyelination and axonal injury. Astrocyte activation is involved in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. This study was designed to find potential lncRNAs in EAE mice and activated astrocytes.
Methods: we performed microarray analysis of lncRNAs from the brain tissues of EAE mice and primary mouse astrocytes treated with IL-9(50 ng/ml). 12 lncRNAs were validated through real-time PCR. Gene ontology and KEGG pathway analysis were applied to explore the potential functions of lncRNAs.
Results: Differentially expressed 3300 lncRNAs and 3250 mRNAs were in the brain tissues of EAE mice, and 3748 lncRNAs and 3332 mRNAs were in activated astrocytes. Notably, there were 2 co-up-regulated lncRNAs and 3 co-down-regulated lncRNAs both in the brain tissues of EAE mice and in activated astrocytes, including Gm14005, Gm12478, mouselincRNA1117, AK080435, and mouselincRNA0681, which regulate the ER calcium flux kinetics, zinc finger protein and cell apoptosis. Similarly, there were 7 mRNAs co-up-regulated and 2 mRNAs co-down-regulated both in vivo and in vitro. Gene ontology and KEGG pathway analysis showed that the biological functions of differentially expressed mRNAs were associated with metabolism, development and inflammation. The results of realtime PCR validation were consistent with the data from the microarrays.
Conclusions: Our data uncovered the expression profiles of lncRNAs and mRNAs in vivo and in vitro, which may help delineate the mechanisms of astrocyte activation during MS/EAE process.
Keywords: Astrocytes; Experimental autoimmune encephalomyelitis; IL-9; LncRNAs; Multiple sclerosis.
© 2018 The Author(s). Published by S. Karger AG, Basel.