Exploring the oncoproteomic response of human prostate cancer to therapeutic radiation using data-independent acquisition (DIA) mass spectrometry

Prostate. 2018 Jun;78(8):563-575. doi: 10.1002/pros.23500. Epub 2018 Mar 9.

Abstract

Introduction: The development of radioresistance in prostate cancer (PCa) is an important clinical issue and is still largely uninformed by personalized molecular characteristics. The aim of this study was to establish a platform that describes the early oncoproteomic response of human prostate tissue to radiation therapy (RT) using a prospective human tissue cohort.

Methods: Fresh and fixed transperineal biopsies from eight men with clinically localized tumors were taken prior to and 14 days following a single fraction of high-dose-rate brachytherapy. Quantitative protein analysis was achieved using an optimized protein extraction pipeline and subsequent data-independent acquisition mass spectroscopy (DIA-MS). Ontology analyses were used to identify enriched functional pathways, with the candidates further interrogated in formalin-fixed paraffin-embedded tissue biopsies from five additional patients.

Results: We obtained a mean coverage of 5660 proteins from fresh tissue biopsies; with the principal post-radiation change observed being an increase in levels amongst a total of 49 proteins exhibiting abundance changes. Many of these changes in abundance varied between patients and, typically to prostate cancer tissue, exhibited a high level of heterogeneity. Ontological analysis revealed the enrichment of the protein activation cascades of three immunological pathways: humoral immune response, leukocyte mediated immunity and complement activation. These were predominantly associated with the extracellular space. We validated significant expression differences in between 20% and 61% of these candidates using the separate fixed-tissue cohort and established their feasibility as an experimental tissue resource by acquiring quantitative data for a mean of 5152 proteins per patient.

Discussion: In this prospective study, we have established a sensitive and reliable oncoproteomic pipeline for the analysis of both fresh and formalin-fixed human PCa tissue. We identified multiple pathways known to be radiation-responsive and have established a powerful database of candidates and pathways with no current association with RT. This information may be beneficial in the advancement of personalized therapies and potentially, predictive biomarkers.

Keywords: cancer; proteomics; radiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biopsy
  • Brachytherapy*
  • Humans
  • Male
  • Mass Spectrometry / methods*
  • Prospective Studies
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / pathology
  • Prostatic Neoplasms / physiopathology*
  • Prostatic Neoplasms / radiotherapy*
  • Proteomics
  • Radiation Tolerance / physiology
  • Radiation Tolerance / radiation effects*