Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors

Sci Signal. 2018 Mar 13;11(521):eaao3810. doi: 10.1126/scisignal.aao3810.

Abstract

The PI3K-AKT kinase signaling pathway is frequently deregulated in human cancers, particularly breast cancer, where amplification and somatic mutations of PIK3CA occur with high frequency in patients. Numerous small-molecule inhibitors targeting both PI3K and AKT are under clinical evaluation, but dose-limiting toxicities and the emergence of resistance limit therapeutic efficacy. Various resistance mechanisms to PI3K inhibitors have been identified, including de novo mutations, feedback activation of AKT, or cross-talk pathways. We found a previously unknown resistance mechanism to PI3K pathway inhibition that results in AKT rebound activation. In a subset of triple-negative breast cancer cell lines, treatment with a PI3K inhibitor or depletion of PIK3CA expression ultimately promoted AKT reactivation in a manner dependent on the E3 ubiquitin ligase Skp2, the kinases IGF-1R (insulin-like growth factor 1 receptor) and PDK-1 (phosphoinositide-dependent kinase-1), and the cell growth and metabolism-regulating complex mTORC2 (mechanistic target of rapamycin complex 2), but was independent of PI3K activity or PIP3 production. Resistance to PI3K inhibitors correlated with the increased abundance of Skp2, ubiquitylation of AKT, cell proliferation in culture, and xenograft tumor growth in mice. These findings reveal a ubiquitin signaling feedback mechanism by which PI3K inhibitor resistance may emerge in aggressive breast cancer cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm / drug effects*
  • Drug Resistance, Neoplasm / genetics
  • Female
  • Humans
  • MCF-7 Cells
  • Mice, Nude
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA Interference
  • S-Phase Kinase-Associated Proteins / genetics
  • S-Phase Kinase-Associated Proteins / metabolism*
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism*
  • Xenograft Model Antitumor Assays / methods

Substances

  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Kinase Inhibitors
  • S-Phase Kinase-Associated Proteins
  • Ubiquitin-Protein Ligases
  • Proto-Oncogene Proteins c-akt