Altered Hippocampal Gene Expression and Morphology in Fetal Piglets following Maternal Respiratory Viral Infection

Dev Neurosci. 2018;40(2):104-119. doi: 10.1159/000486850. Epub 2018 Mar 14.

Abstract

Maternal infection during pregnancy increases the risk of neurobehavioral problems in offspring. Evidence from rodent models indicates that the maternal immune response to infection can alter fetal brain development, particularly in the hippocampus. However, information on the effects of maternal viral infection on fetal brain development in gyrencephalic species is limited. Thus, the objective of this study was to assess several effects of maternal viral infection in the last one-third of gestation on hippocampal gene expression and development in fetal piglets. Pregnant gilts were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) at gestational day (GD) 76 and the fetuses were removed by cesarean section at GD 111 (3 days before anticipated parturition). The gilts infected with PRRSV had elevated plasma interleukin-6 levels and developed transient febrile and anorectic responses lasting approximately 21 days. Despite having a similar overall body weight, fetuses from the PRRSV-infected gilts had a decreased brain weight and altered hippocampal gene expression compared to fetuses from control gilts. Notably, maternal infection caused a reduction in estimated neuronal numbers in the fetal dentate gyrus and subiculum. The number of proliferative Ki-67+ cells was not altered, but the relative integrated density of GFAP+ staining was increased, in addition to an increase in GFAP gene expression, indicating astrocyte-specific gliosis. Maternal viral infection caused an increase in fetal hippocampal gene expression of the inflammatory cytokines TNF-α and IFN-γ and the myelination marker myelin basic protein. MHCII protein, a classic monocyte activation marker, was reduced in microglia, while expression of the MHCII gene was decreased in hippocampal tissue of the fetuses from PRRSV-infected gilts. Together, these data suggest that maternal viral infection at the beginning of the last trimester results in a reduction in fetal hippocampal neurons that is evident 5 weeks after infection, when fetal piglets are near full term. The neuronal reduction was not accompanied by pronounced neuroinflammation at GD 111, indicating that any activation of classic neuroinflammatory pathways by maternal viral infection, if present, is mostly resolved by parturition.

Keywords: Fetal pig; Hippocampus; Maternal immune activation; Microglia; Neurogenesis; Neuroinflammation; Prenatal insult.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Animals, Newborn
  • Female
  • Fetal Development
  • Fetus
  • Gene Expression
  • Hippocampus / pathology*
  • Porcine Reproductive and Respiratory Syndrome*
  • Porcine respiratory and reproductive syndrome virus
  • Pregnancy
  • Pregnancy Complications, Infectious*
  • Prenatal Exposure Delayed Effects* / genetics
  • Prenatal Exposure Delayed Effects* / pathology
  • Swine