In the pyrolysis of Sphagnum moss species, p-isopropenylphenol (p-IPP) is a major product which has been considered in this density functional theory based computational study for its conversion to various products such as benzene, phenol, 4-propenylphenol, indan-5-ol, 4-propylcyclohexanone, 4-cyclopropylphenol, etc. In order to achieve these products, eight different reaction schemes are performed using B3LYP/6-311 + g (d,p) level of theory. Further, thermodynamic properties such as reaction free energies and reaction enthalpies associated with these eight reaction schemes are developed in the temperature range of 298-898 K. The reaction schemes that include partial hydrogenation of the aromatic carbon followed by elimination of functional groups are found to demand low activation energy. The production of benzene from p-IPP with isopropenylbenzene as an intermediate product requiring only 19.83 kcal/mol of activation energy is the rate limiting reaction step. Indan-5-ol produced from p-IPP is validated with the literature results and found excellent agreement between two results. Furthermore, the temperature is found to have phenomenal effect in each reaction scheme.
Keywords: Activation energy; B3LYP; Bio-oil upgrading; Density functional theory; Reaction pathways; Thermochemistry; p-Isopropenylphenol.
Copyright © 2018 Elsevier Inc. All rights reserved.