Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, such as electronic properties and adsorption energetics. Finally, we feature the opportunities and challenges ahead for 2D nanomaterials as efficient electrocatalysts. By considering theoretical calculations, surface characterization, and electrochemical tests, we describe the fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.