Objective: Evaluation of the ratio of oxyhaemoglobin to total haemoglobin in skeletal muscle (StO2) using near-infrared spectroscopy may aid in the monitoring of patients with sepsis. This study assessed the benefits and risks of targeting StO2 in adults with severe sepsis or septic shock.
Design: A European randomised controlled trial was performed on two parallel groups.
Setting: Five intensive care units (ICU) in France, Greece, Spain and Germany were used for the study.
Participants: A total of 103 adults with severe sepsis or septic shock on ICU admission were randomised (54 subjects in the experimental arm and 49 subjects in the control arm).
Interventions: Haemodynamic management using an algorithm that was adapted from the 2004 Surviving Sepsis Campaign guidelines with (experimental arm) or without (control arm) targeting an StO2 value greater than 80% at a minimum of two different sites.
Outcomes: The primary outcome was a composite: 7-day all-cause mortality or worsening of organ function, defined as a positive difference in Sepsis-related Organ Failure Assessment (SOFA) score between day 7 and randomisation (ie, delta SOFA >0). Secondary endpoints: 30-day mortality, duration of mechanical ventilation and vasopressor therapy up to 30 days from randomisation.
Results: The study ended prematurely due to lack of funding after enrolment of 103/190 patients. Eighteen patients (33.3%) in the experimental arm and 14 (28.6%, P=0.67) in the control arm died or exhibited delta SOFA >0 on day 7. The mean number of days on mechanical ventilation was 12.2±10.6 in the experimental group and 7.6±7.9 in the control group (P=0.03). Thirty-one (57%) patients in the experimental arm and 14 (29%) patients in the control arm received red cells by day 7 (P=0.01).
Conclusion: Despite the limitation related to premature termination, this study provides no data to support the routine implementation of resuscitation protocols incorporating StO2 >80% at two or more muscle sites as a target. StO2-guided therapy may be associated with prolonged use of mechanical ventilation and an increased number of red blood cell transfusions.
Trial registration number: NCT00167596; Results.
Keywords: microcirculation; near infrared spectrometry; organ dysfunction; sepsis; shock.
© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.