Triclosan (TCS), a common antimicrobial ingredient, is present in many consumer products, including soaps, shampoos, and toothpaste. Owing to its widespread use, potential adverse effects on animals and humans may arise from lifetime exposure, but data on chronic prepubertal exposure of TCS are still lacking. The aim of the present study was to investigate the influence of subchronic TCS exposure (0.25, 25, 250, or 750 mg/kg) on target organ toxicity in prepubertal male rats. After daily administration of TCS to rats by oral gavage for 60 d, a significant reduction in body weight and relative weights of liver, kidneys, testes, and adrenal glands was observed in the 750-mg/kg (high dose) group. Serum alanine aminotransferase and aspartate aminotransferase activities as well as levels of blood urea nitrogen, and creatinine were significantly increased at 750 mg/kg TCS. Further, TCS (750 mg/kg) elevated the protein expressions of hepatic CYP2B1, RXR/PPAR, and levels of malondialdehyde. High-dose TCS exposure induced histological changes as evidenced by reduction of Bowman's space, occlusion of the tubular lumen, and degeneration of tubular epithelial cells in the kidney. Tubular necrosis was confirmed as evidenced by a rise in expression of high mobility group box 1 renal protein. Daily sperm production was significantly diminished by high doses of TCS with marked inhibition of androgen receptor protein expression. Our results indicated that subchronic exposure to excessively high concentrations of 750 mg/kg TCS induced hepatorenal and reproductive toxicities in prepubertal male rats; however, the biological relevance of these findings is questionable as these drug levels are not encountered in the environment.